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Abstract—The effect of transverse thermal dispersion on natural convection from a vertical, heated plate
in a porous medium is examined analytically. The results show that due to the better mixing of the thermal
dispersion effect, the heat transfer rate is greatly increased. By taking the no-slip boundary effect into
account, it is found that the flow has dual-layer structure. For the inner region, the velocity gradient is
very large and the viscous resistance due to the presence of the wall is important. For the outer, much
wider, region the velocity gradient is rather small and the viscous resistance term can be neglected. A
singular perturbation method is employed to get the higher-order corrections due to the inclusion of the
no-slip boundary effect.

INTRODUCTION

Buovancy-induced flow from a vertical surface in
a porous medium was first studied by Cheng and
Minkowycz by using Darcy’s law [{1]. Numerous
investigations [2-8] have been conducted to study the
various non-Darcian effects for this type of problem.
The inertia effect is shown to decrease the heat trans-
fer when the Rayleigh number is increased [2, 3].
The boundary effect, due to the no-slip boundary
condition, also results in a smaller Nusselt number,
but is less pronounced as the Rayleigh number is
increased [4-6]. For packed-sphere systems, the
porosity near the wall is higher than in the bulk region
{9] causing an increase in velocity near the wall. The
heat transfer is then increased due to this wall-chan-
neling effect. When the inertia effect is prevalent, it is
suggested by Cheng [7] and Plumb [8] that the thermal
dispersion becomes important. Plumb [8] studied this
problem with the no-slip boundary effect neglected
and showed that the heat transfer is increased by the
thermal dispersion. Several experimental works [10-
12} were conducted to determine the effective thermal
conductivity for forced convection through fluid-satu-
rated, porous media. It is shown that the effective
conductivity can be considered as the sum of a stag-
nant conductivity (due to molecular diffusion) and a
dispersion conductivity (due to mechanical disper-
sion). In addition, radial temperature distributions
measured by these researchers revealed a large tem-
perature gradient near the wall while temperature
gradients in the core region are comparably much
smaller. Since uniform velocity distributions were
assumed in these works, no satisfactory explanation
can be given for this ‘temperature slip’ phenomenon
near the wall. This can be explained when the no-slip
boundary condition is considered as in the present
study. Due to the no-slip condition, the dispersion

effect near the wall is much reduced. Therefore the
thermal resistance is much higher than that in the core
region and a large temperature gradient is observed.

The present study investigates the thermal dis-
persion effect in addition to the no-slip boundary and
inertia effects for natural convection flow. Since the
boundary effect is restricted in a very small region
near the wall, a singular perturbation method is
employed to tackle this problem. The results show
that due to the combination of no-slip and dispersion
effects, the temperature gradient near the wall is
increased, while it decreases for most parts of the
thermal boundary layer away from the wall. This kind
of temperature profile is similar to that of forced
convection in a porous medium [11, 12]. It is also
shown that the solution obtained by Plumb {8] is the
zeroth-order outer solution of the present problem
and the corrections to his results by the inclusion of
the boundary effect are clearly shown.

FORMULATIONS OF THE PROBLEM

The analysis applies to a flat, vertical plate em-
bedded in an extended body of fluid-saturated
porous medium at uniform temperature. By employ-
ing the usual boundary-layer and Boussinesq approxi-
mations, the governing equations which include the
boundary, inertia and thermal dispersion effects can
be written as [5]: '

oy Oy
U= —6;, V= — x (1)
Hetd 2 iy Ou
X + peCu’ = pegB(T—T,) + " 'a')“)'i @

oT ar ¢ oT
L o

u‘a—x:“-{'f)gj;:*a} deﬁa

143



144 J. T. HonG and C. L. TN
NOMENCLATURE
C inertia coeflicient oy dispersion diffusivity
cr fluid specific heat B fluid thermal expansion coefficient
Da, local Darcy number, K/x? v mechanical dispersion coefficient
Ds  dispersion parameter " outer dimensionless cross-stream
d pore or particle diameter coordinate
F inner dimensionless streamfunction g porosity
I outer dimensionless streamfunction o, boundary parameter
Gr  modified Grashof number, { inner dimensionless cross-stream
gP(T ~ T IK*CIv} coordinate
g gravitational constant o,  inner momentum boundary-layer
K permeability thickness, (K/e)'?
ks effective thermal conductivity ue  fluid viscosity
Nu, local Nusselt number Ve fluid kinetic viscosity
Ra, local Darcy—Rayleigh number, pr fluid density
gBAT,, — T K] voigy ¢ inner dimensionless temperature
Ra, Darcy-Rayleigh number based on 8 outer dimensioniess temperature
particle diameter, gf{T,, — T, ) Kd/vos ) streamfunction.
Re inertia Reynolds number, CKup/v;
T temperature
u velocity Subscripts
up  Darcy velocity w evaluated at wall condition
x streamwise coordinate oo evaluated at infinity.
¥ cross-stream coordinate.
Greek symbols Superscripts
o fluid molecular diffusivity ! differentiation w.r.t. # or { for outer and
oy stagnant effective thermal diffusivity inner variables, respectively.

It should be noted that the energy equation is based
on the assumption of local thermal equilibrium.
According to the criteria given by Whitaker [11], this
assumption should work well when the ratio of the
particle or pore size to the characteristic length of the
heated plate is much less than the inverse of the par-
ticle Darcy—Rayleigh number to the second power,
under the assumption that the conductivities of the
solid and fluid phases have the same order of mag-
nitude.

The boundary conditions for equations (1) to (3)
are

u=v=0 T=T,
T-T,

“4)
&)

where # and v are the velocity components in the x
(along the plate) and y (perpendicular to the plate)
directions; ¥, T and ¢ are the streamfunction, tem-
perature and gravitational constant; K, C and ¢ are
the permeability, inertia coefficient and porosity of
the porous medium; py, u; and §; are the density,
viscosity and thermal expansion coefficient of the
fluid; and o4 = k/(pc) is the effective thermal
diffusivity of the porous media with pe«, denoting the
product of density and specific heat of the fluid and
k.qis the effective thermal conductivity. The subscripts
w and oo denote the conditions at wall and infinity,

aty=20

u=0, aty — o0

respectively. Since a homogeneous porous medium is
assumed, K, C and ¢ are all independent of position.

It is suggested that the effective thermal diffusivity
of a saturated porous medium can be expressed as
[12-15}:

Lo = Qg+ g (6)
where oy is the stagnant diffusivity and a4 is the
dynamic diffusivity due to mechanical dispersion.
From the volume-averaged, continuum representa-
tion of a porous medium, it is seen that the macro-
scopic concept of thermal dispersion is due to the
local temperature and velocity deviations [16]. The
general form of the dispersion diffusivity a4 has been
investigated by several authors; see for example the
review articles by Fried and Combarnous [15]. In the
present analysis, it is assumed that «, can be expressed
as:

M

where d is the dimension of the particle or pore diam-
eter, v is the dispersion coefficient which is a function
of the structure of the porous medium. This kind of
representation for a, is also supported by the previous
experimental works [12-15].

By incorporating the nondimensional variables

og = yud
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listed below
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equations (1)—(3) can be written in the following non-
dimensional forms

o f = =Cr(f) = —0 ©
(A+DsfH0"+(Dsf"+0.5/)6" =0 (10)

with the following boundary conditions :
f=f=0, 6=1 aty=0 an
f -0, -0 asy—> co. 12)

The local Darcy—Rayleigh number in equation (8)
is defined as

. gBATKx
Ra, =970
Villery

and the primes in equations (9)-(12) refer to the
differentiation with respect to the local-similarity
coordinate #.

Three parameters in equations (9) and (10) which
characterize respectively the boundary, inertia and
dispersion effects are

6.’( = (ﬁaXDaX/g) 1/2
gBATK*C
v

Ds = yﬁad

boundary parameter

modified Grashof number Gr =

dispersion parameter

where Da, = K/(x?) is the local Darcy number and
Ra, = gBATKd|(viy) is the Darcy-Rayleigh number
based on the pore or particle size, d.

SINGULAR PERTURBATION SOLUTIONS

Hsu and Cheng [4] and Hong er al. [5] have pointed
out that the boundary parameter ¢, characterizes the
ratio of the inner momentum boundary-layer thick-
ness, of order (K/e)'?, to the thermal boundary-layer
thickness, of order x/Ra!/*. For most porous media
g, is a very small number and its effect is restricted to
a thin region near the wall. To obtain a solution for
g, — 0, a singular perturbation technique is needed.
It is assumed that the flow consists of two regions.
Near the wall there is a thin region of large velocity
gradients where the viscous resistance due to the pres-
ence of the wall is important. In the remaining, much
wider, region the velocity gradients are small com-
pared with those near the wall and the boundary effect
can be considered to be negligible. Accordingly, in the
inner region, the similarity coordinate is stretched as
follows

(13)

Inner expansions for f and 0 are taken to be
f = lFo@+a Fi()+eiF(O)+...] (14a)
0=0,0+0,0,0)+010,(0)+.... (14b)

The inner variables and expansions are chosen so that
to the lowest order, as g, — 0, the viscous term which
accounts for the no-slip boundary effect is retained.

Writing the governing equations (9), (10) in terms
of the inner coordinate (13) and expansions (14), and
requiring that the equations be satisfied at each level
in powers of a,, the following systems of equations
are obtained :

F{'—Fy—GrFi? = —0, (15a)
O+ Ds(Fy®,) =0 (15b)
F{"—F\=2GrF,F\ = —0©, (16a)

@1+ Ds(Fy@®") + Ds(F\@,) = 0. (16b)

Note that when dispersion effects are neglected the
two lowest-order temperature profiles are linear in the
inner region. This can be easily seen from equations
(15b) and (16b) by setting Ds = 0. These linear tem-
perature profiles will be modified by the consideration
of the dispersion effect.

In similar fashion, outer expansions are taken to be

f=fota fit+alfo+... (17a)
0=00+Ux01+6302+-"' (17b)

Substituting in the same manner as for the inner
equations, the following systems of equations are
obtained :

Fi+Gr(f§?Y —0,=0 "(18a)
06+ Ds(f40,) +0.5fo0% =0 (18b)
FI42Gr(fof)—0,=0 (19a2)

07+ Ds(f007) +Ds(f10%)
+0.5(f 004+ f105) = 0. (19b)

Boundary conditions at the surface ({ =0) are
obtained by substituting the new variable (13) and the
expansions (14) into equation (11) to give:

at{=0: F(0)=F/(0)=0 i=012,...
0,(0)=1; ©0)=0 i=12,....

(202)
(20b)

Likewise, the boundary conditions far from the sur-
face are obtained by substituting the outer expansions
(17) into equation (12) to obtain:

i=0,1,2,...
i=0,1,2,....

aty—oo: f{(0)=0
0,(0) =0

(21a)
(21b)

The outer ({ — oo) boundary conditions for the inner
equations and the inner (n — 0) boundary conditions
for the outer equations are obtained by matching the
inner and outer expansions. The method used here
is similar to that described by Van Dyke [17]. The
additional boundary conditions obtained according
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to this matching principle are:

O (0) =0, Fi(oo)=fo0)  (22a)
6(0) = @(c0), fo(0) =0 (22b)
©' () = 05(0), Fi(w)=f{0) (23a)

0,(0) = lim (©,(00) =@, (20)0),
£1(©) = lim (Fy(o0) = Fi(o0)0).  (23b)

CALCULATION PROCEDURE

Equation (15b) together with boundary con-
ditions (20b) and (22a) can be easily integrated to give

®0=].

Therefore, thermal dispersion has no effect on the
basic inner temperature profile @,. If this is combined
with equation (22b), the inner boundary conditions
for the basic onter solutions f, and 6, become

86(0) =1, fo(0) =0.

This together with the boundary conditions (21a) and
(21b) provide enough information to obtain the
zeroth-order outer solutions f, and 6, by integrating
(18a) and (18b) using a fourth-order Runge-Kutta
scheme. Note that these basic outer equations are
exactly the same as those studied by Plumb [8]. There-
fore, his solutions provide the basic zeroth-order outer
solutions for the present problem.

After obtaining the solutions for f; and 0,, the
basic zeroth-order inner velocity expansion Fj can
be obtained by integrating equation (15a) with the
boundary conditions given by (20a) and (22a). Since
®, = I, equation (15a) can be rewritten as

Fy' —Fy—GrF+1=0. 25

This and the boundary conditions (20) and (22} are
exactly the same type of equations for a forced boun-
dary-layer flow over a plane surface in porous media
by employing the Brinkman-Ergun model (Appen-
dix). Tt is also noted that the dispersion does not
influence F, through this governing equation (22). The
influence seems to be experienced by F, through the
matching condition (22). However from equation
(18a), it is clearly seen that f(0) is independent of
Ds. Therefore, no dispersion effect is experienced by
F,.

The first perturbation for the inner temperature
profile, @,, can now be obtained by solving (16b) with
boundary conditions given by (20b) and (23a). Then
integrating once and applying the results &5 = 0, it
can be shown

2%

[1+ DsFy(a0)]05(0)
Q) = — S L
1©) 14 DsF,(()
with boundary condition @,(0) = 0. The temperature
gradient at the wall is

©'(0) = [1+ DsF,(c0)jf5(0) (26)

J. T. HonG and C. L. TN

which is an important quantity in determining the
heat transfer.

The inner boundary conditions, f,(0) and 8,(0), for
the first outer expansions can now be evaluated from
(23b). Together with boundary conditions (21), f;
and 6, can be obtained by integrating (19a) and (19b).
Afterwards, the first perturbation for the inner vel-
ocity profile, F}, can be obtained by integrating
(16a) with boundary conditions (20) and (23).

To get the numerical results for the heat transfer
which account for the boundary effect, the second
perturbation of the inner temperature gradient at the
wall, @3(0), is important. However, there is no need
to get complete solutions for @, throughout the inner
region since @5(0) can be evaluated from the infor-
mation provided by the lower-order solutions as
shown below.

The governing equations for @, can be obtained in
a similar manner as those for @, and ®,. The result
is

O+ Ds(Fy@%) +Ds(F10)) =0 27

with boundary conditions given by
0,(0)=0 (28a)
©%(e0) = 05(0) +6,(0) (28b)

where equation (28b) is obtained by the matching
principle.
Equation (27) can be integrated once to give

05(0)—DsF' (£)©1()
1+ DsFy(¢)
Evaluating this at { - o0 and applying the matching

boundary condition (28b), two relations can be
obtained

2A0) =

=Dsf (0850,
1+ DsFy(c0) 650 29
2(0—=Dsf(0)8:(0)
14 DsFp(0) 1) (30)
where the conditions
Fi(o0) = f5(0) + 11(0)

@7 (0) = 05(0)

from the matching principle have already been used.
It is also noted that the relation (29) can also be
obtained by evaluating equation (19b) at the wall.
Equation (30) when rearranged gives the result, ©5(0),
needed for calculating the heat transfer from the heat-
ing plate, i.c.

2(0) = [1+DsF(c0)]01(0)+ Dsf1(0)85(0).  (31)

RESULTS AND DISCUSSIONS

The numerically calculated variations of the outer
velocity (f, /) and temperature profiles (8;, 8,) are
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Fi1G. 1. Perturbation functions of outer expansion : (a) velocity ; (b) temperature.

presented in Fig. 1 for Gr = 0.1 and in Fig. 2 for
Gr = 1. From these figures it is seen that both inertia
and dispersion effects tend to increase the outer boun-
dary-layer thickness. The first-order outer expan-
sions f, and 0, are negative at n =0 when Ds is
not zero. This implies that dispersion decreases the
velocity and temperature very close to the wall. The
magnitude of these negative values increases as Ds
becomes larger.

Although the outside profiles f; depend on both
the inertia parameter Gr and the dispersion parameter
Ds, £(0)is a function of Gr only. Then from equation
(18a) it is seen that the variations for the zeroth-order
velocity expansion Fy are independent of the dispersion
effect. This is clearly shown in Fig. 3 where Fis shown
to be a function of the modified Grashof number only.

1.0

-02

As discussed earlier, the profiles for Fj are similar to
those for forced convection boundary layer flows over
a flat plate by using the Brinkman—Ergun type of
equation. The variations of F{ as a function of { are
presented in Fig. 4 where it is shown that F7/ is negative
and is linear when { is large.

Figure 5 shows the results for the first perturbation
to the inner temperature. For small Ds the linear
profiles indicate that conduction is dominant. For
large Ds, @, is still linear in most portions of the inner
region. However, for a very small region near the wall,
the profile is no longer linear, and the gradient at the
wall is very large. It is concluded that when dispersion
effects are important, in a very small region near the
wall (smaller than the inner-region thickness), the
temperature gradient is greatly increased. As a result,

1.0

o8\ -

08I

04t \

OF: o N

0]¢] -

-02+

F1G. 2. Perturbation functions of outer expansion : (a) velocity ; (b) temperature.
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FIG. 3. Zeroth-order inner velocity profiles.

the heat transfer is greatly increased due to the dis-
persion effect. However, in most parts of the thermal
boundary layer, the temperature gradient is decreased
due to better mixing by the mechanical dispersion
effect. This phenomenon is very similar to that for a
turbulent flow. In that case, the temperature gradient
in most parts of the thermal boundary layer is
decreased due to the better mixing by large eddies
while the temperature gradient in the viscous sublayer
is largely increased.

The most important result to be given is an ex-
pression for heat transfer. This can be presented most
conveniently by introduction of the local Nusselt
number

X oT

Nux - (Tw—Too) @

y=0

By introducing the nondimensional variables, this can
be written as

Nu, _ 1 06
Ra;‘:/z h o, 0f (:0.

From the expansion for the temperature field, the
local Nusselt number is related to the gradients ©7(0)
and @%(0) at the surface as

Nu , ,

7-{?% = —[@1(0)+0,050)+.. ] 32)
1.0

Ds=02
S Ds=2
£
-2 os|
‘G‘r=01
oaf- .
o2k ’//’// Gr=1
’:“” 1 ] 1
O'CO 2 4 6 8 10
¢

F1G. 4. First-order inner velocity profiles.
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F1G. 5. First-order inner temperature profiles.

where @1(0) and ©5(0) are given by equations (26)
and (31), respectively.

The calculated values of the temperature derivatives
in (32) are listed in Table 1. When both inertia and
dispersion effects are neglected (Gr = Ds = 0), the
result @7(0) is the same as that obtained by Cheng
and Minkowycz [1]. The solution @5(0) gives a first-
order correction due to the inclusion of the boundary
effect. Since @5(0) is always positive, the boundary
effect always decreases the heat transfer. The resuits
for the local Nusselt number according to equation
(32) are presented in Table 2. When inertia and dis-
persion effects are considered, the results show that
for large values of the parameter Ds, the dispersion
effect dominates and the heat transfer is greatly
increased. However, for small values of Ds, the trans-
verse dispersion effect is relatively unimportant and
the dominant inertia effect reduces the heat transfer.
From the nature of the present analysis, the results
given by (32) should be better for smaller values of
o,. Fortunately, for most porous media, o, is very
small except for a very short region near the leading
edge ; therefore, the present analysis should give sat-
isfactory results for most cases. Numerical solutions
of the full equations (9) and (10) obtained by using a
modified version of the adaptive finite-difference
solver (PASVAR) [18] are also presented in Table 2.
A comparison of results by these two methods shows
that the singular perturbation method gives quite sat-
isfactory results especially for small 6,. The advantage

Table 1. Solutions for ®1(0) and ©5(0)

Gr Ds 0;(0) 4(0)
0 —0.4438 0.2945
0.1 0 —0.4295 0.2524
0.2 —0.4575 0.2938
2 —0.6574 0.5099
5 —0.8957 0.6922
1 0 —0.3658 0.1299
0.2 ~0.3827 0.1447
2 —0.5098 0.2340
5 —0.6697 0.3199
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Table 2. Numerical results for Nu,/Ra\?

Nu,/Ra"?
Finite Percentage
Gr Ds o, Perturbation difference difference
0 0 0.1 —0.414350  —0.417011 0.638
0.05 —0.429075 —0.429728 0.151
0.01  —0.440855  —0.440839 0.004
0.1 02 01 —0.428120  —0.430647 0.587
005 —0.442810 —0.443511 0.158
001 —0.454562  —0.454639 0.018
2 0.1 ~0.606410 —0.610966 0.746
005 —0.631905 —0.633191 0.202
0.01  —0.652301 —0.652354 0.008
5 0.1 —0.826480  —0.83369%4 0.865
0.05 ~—0.861090 —0.863571 0.287
0.01 —0.888778 —0.889109 0.037
1 02 01 —0.368230  —0.368922 0.187
0.05 —0.375465 —0.375659 0.051
0.01 —0.381253  —-0.381262 0.003
2 0.1 —0.486400 —0.487830 0.293
0.05 —0.498100  —0.498558 0.092
0.1 —0.507460  —0.507529 0.014
5 0.1 —0.637710  —0.640359 0414
0.05 —0.653705 —0.654710 0.153
001  —0.666501  —0.666659 0.024

of this method over the other one is that it gives
results which display the boundary effect explicitly.
In addition, it exposes the predominant factors in
different parts of the boundary layer.

CONCLUSIONS

The steady natural convection heat transfer from a
vertical, isothermal, heated plate in porous media is
studied analytically. Three parameters are found to
characterize three non-Darcian effects: boundary,
inertia and dispersion effects. By the inclusion of the
no-slip boundary effect, it is found the flow consists
of two distinct regions : an inner region exists near the
surface where the velocity gradient is very large and
the viscous term cannot be neglected. Away from the
wall, a much wider region exists where the boundary
effect can be neglected. Using the method of matched
asymptotic expansions, it is found that dispersion has
no effect on the zeroth-order inner expansions. The
zeroth-order inner velocity profile is found to be simi-
lar to that for a forced convection boundary layer
over a flat surface. Both the inertia and boundary
effects are found to decrease the heat transfer, while
dispersion will increase the heat transfer. Whether the
heat transfer is increased or decreased depends on the
relative magnitude of these three mechanisms.
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APPENDIX

By employing the well known Brinkman—Ergun model for
non-Darcian flow, the governing equation for a forced boun-
dary-layer flow over a plane surface can be written as

2
with boundary conditions
aty=0: u=0
aty - oo u—u,.

These equations can be nondimensionalized by using the
Darcy velocity up and inner momentum boundary-layer

thickness 6,
Kd K\"?
_Kdp (E) ,

Up = de,
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By defining the nondimensional streamfunction, F, the non-  and governing equation and the boundary conditions are
dimensional coordinate, #, as transformed to

2

- y F”—F —ReF*+1=0
~un®le ) T (Ko

u
F@©)=0, F =2
then © () Up

dy — uiF where the inertia Reynolds number Reﬁ= CKup/v; is anal-
dy P ogous to the modified Grashof number Gr.

U=

ANALYSE DE L’EFFET DE LA DISPERSION THERMIQUE SUR LA CONVECTION
NATURELLE DANS UN MILIEU POREUX CONTRE UNE PLAQUE VERTICALE

Résumé—On examine analytiquement I’effet de la dispersion thermique transversale sur la convection
naturelle dans un milieu poreux a partir d’une plaque chaude verticale. Les résultats montrent qu’a cause
du meilleur mélange par I'effet de dispersion thermique, le flux de chaleur est fortement accru. En prenant
en compte la condition de non glissement, on trouve que ’écoulement a une structure de couche duale.
Pour la région interne, le gradient de vitesse est trés grand et la résistance visqueuse due a la présence de
la paroi est importante. Pour la région externe plus épaisse, le gradient de vitesse est plutot faible et le
terme de résistance visqueuse peut étre néglige. Une méthode de perturbation singuliére est employée pour
obtenir des corrections d’ordre élevé dues a P'inclusion de 'effet de fronticre sans glissement.

UNTERSUCHUNG DES THERMISCHEN AUSBREITUNGSEFFEKTES AUF EINER
VERTIKALEN PLATTE BEI NATURLICHER KONVEKTION IN POROSEN MEDIEN

Zusammenfassung—Der Einflul der thermischen Querausbreitung auf die natiirliche Konvektion an einer
vertikalen geheizten Platte in einem pordsen Medium wird analytisch untersucht. Die Ergebnisse zeigen,
daB infolge einer verbesserten Vermischung durch den Effekt der thermischen Querausbreitung der Wir-
meiibergang stark verbessert wird. Zieht man den schlupflosen Grenzschichteffekt in Betracht, zeigt sich
eine Zweilagenstruktur der Strémung. Im inneren Bereich ist der Geschwindigkeitsgradient sehr groB und
die Reibungskraft wird im Wandbereich dominierend. Im duBeren, viel gréBeren Stromungsgebiet ist der
Geschwindigkeitsgradient recht klein und die Reibungskraft kann vernachléssigt werden. Es wird eine
Stréomungsmethode zur Ermittlung der Korrekturfaktoren hoherer Ordnung herangezogen.

AHAJIU3 BJIUAHHUSA PACITPOCTPAHEHUA TEIJIA HA ECTECTBEHHVYIO
KOHBEKIIUIO OKOJIO BEPTUKAJILHON TLJIACTUHBI B TOPUCTOMN CPEJE

AHHOTAIMA—AHAMTUYECKH HCCAEeIyeTCs BIMSHUE NONMEPEYHOro nepeHoca TEMja Ha eCTECTEHHYIO KOH-
BEKLMIO OKOJIO BEPTUKANBHON HAarpeBaeMoOil IJIACTHHBI B NOPUCTOH cpene. Pe3ynbTaTsl MOKa3bIBAlOT,
4to, Oiarogapsa ay4lliemy NepeMelIHBaHHIO, HHAYLIMPDOBAaHHOMY PaclpOoCTPAHEHHEM Telia, MHTEHCHB-
HOCTb TEIUIONEPEHOCa 3HAYMTENbHO pacTeT. B MpelamnonoXxeHHH OTCYTCTBHS CKOJIBXCHHS HAa TFpaHHLE
HaiJeHo, YTO TeYeHHEe UMEET ABYXCIOMHYIO CTPYKTYPY. s BHYTpeHHe#l 00JjacTH rpaaMeHT CKOPOCTH
OYeHb BBICOK H BA3KO€ COMPOTHBJICHHE H3-3a HAJIMYHA CTEHKH BeCbMa CYILECTBEeHHO. [l HAapyXHOI,
Bonee WMPOKOH 30HBL, TPAREHT CKOPOCTH AOBOJIBHO MaJl H YE€HOM, ONHCHIBAIOIIMM BA3KOE COMPOTHB-
JleHHe, MOXHO npeHebpeub. st MosyYeHHs MONMPaBOK BHICIIETO MOPAJAKA € YIETOM OTCYTCTBHS CKOJlb-
XeHHs Ha CTeHKe IPUMEHAETCA METO/I CHHTYJIAPHBIX BO3MYIIEHH.



