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Abstract--The effect of transverse thermal dispersion on natural convection from a vertical, heated plate 
in a porous medium is examined analytically. The results show that due to the better mixing of the thermal 
dispersion effect, the heat transfer rate is greatly increased. By taking the no-slip boundary effect into 
account, it is found that the flow has dual-layer structure. For the inner region, the velocity gradient is 
very large and the viscous resistance due to the presence of the wall is important. For the outer, much 
wider, region the velocity gradient is rather small and the viscous resistance term can be neglected. A 
singular perturbation method is employed to get the higher-order corrections due to the inclusion of the 

no-slip boundary effect. 

INTRODUCTION 

Buoyancy-induced flow from a vertical surface in 
a porous medium was first studied by Cheng and 
Minkowycz by using Darcy’s law [I]. Numerous 
investigations [2-81 have been conducted to study the 
various non-Darcian effects for this type of problem. 
The inertia effect is shown to decrease the heat trans- 
fer when the Rayleigh number is increased [2, 31. 
The boundary effect, due to the no-slip boundary 
condition, also results in a smaller Nusselt number, 
but is less pronounced as the Rayleigh number is 
increased [4_63. For packed-sphere systems, the 
porosity near the wall is higher than in the bulk region 
[9] causing an increase in velocity near the wall. The 
heat transfer is then increased due to this wail-chan- 
neling effect. When the inertia effect is prevalent, it is 
suggested by Cheng [7] and Plumb [8] that the thermal 
dispersion becomes important. Plumb [8] studied this 
problem with the no-slip boundary effect neglected 
and showed that the heat transfer is increased by the 
thermal dispersion. Several experimental works [l& 
121 were conducted to determine the effective thermal 
conductivity for forced convection through fluid-satu- 
rated, porous media. It is shown that the effective 
conductivity can be considered as the sum of a stag- 
nant conductivity (due to molecular diffusion) and a 
dispersion conductivity (due to mechanical disper- 
sion). In addition, radial temperature distributions 
measured by these researchers revealed a large tem- 
perature gradient near the wall while temperature 
gradients in the core region are comparably much 
smaller. Since uniform velocity distributions were 
assumed in these works, no satisfactory explanation 
can be given for this ‘temperature slip’ phenomenon 
near the wall. This can be explained when the no-slip 
boundary condition is considered as in the present 
study. Due to the no-slip condition, the dispersion 

effect near the wall is much reduced. Therefore the 
thermal resistance is much higher than that in the core 
region and a large temperature gradient is observed. 

The present study investigates the thermal dis- 
persion effect in addition to the no-slip boundary and 
inertia effects for natural convection flow. Since the 
boundary effect is restricted in a very small region 
near the wall, a singular perturbation method is 
employed to tackle this problem. The results show 
that due to the combination of no-slip and dispersion 
effects, the temperature gradient near the wall is 
increased, while it decreases for most parts of the 
thermal boundary layer away from the wall. This kind 
of tem~rature profile is similar to that of forced 
convection in a porous medium [l I, 121. It is also 
shown that the solution obtained by Plumb [S] is the 
zeroth-order outer solution of the present problem 
and the corrections to his results by the inclusion of 
the boundary effect are clearly shown. 

FORMULATIONS OF THE PROBLEM 

The analysis applies to a flat, vertical plate em- 
bedded in an extended body of fluid-saturated 
porous medium at uniform temperature. By employ- 
ing the usual boundary-layer and Boussinesq approxi- 
mations, the governing equations which include the 
boundary, inertia and thermal dispersion effects can 
be written as [5] : 

(1) 
w a* 

u=au v= -ax 

(2) 

(3) 
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NOMENCLATURE 

inertia coefficient 
fluid specific heat 
local Darcy number, K/X” 
dispersion parameter 
pore or particle diameter 
inner dimensionless streamfunction 
outer dimensionless streamfunction 
modified Grashof number, 

&‘r(T~ - T,)K’Cl$ 
gravitational constant 
permeability 
effective thermal conductivity 
local Nusselt number 
local Darcy-Rayleigh number, 

sP0, - T&%‘+& 
Darcy-Rayleigh number based on 
particfe diameter, g/347’,,, - ~~)~d/v~~~ 
inertia Reynolds number, CKu,/v, 
temperature 
velocity 
Darcy velocity 
streamwise coordinate 
cross-stream coordinate. 

Greek symbols 

Mf fluid molecular diffusivity 

&r stagnant effective thermal diffusivity 

dispersion diffusivity 
fluid thermal expansion coefficient 
mechanical dispersion coefficient 
outer dimensionless cross-stream 
coordinate 
porosity 
boundary parameter 
inner dimensionless cross-stream 
coordinate 
inner momentum boundary-layer 
thickness, (K/E)‘!* 
fluid viscosity 
fluid kinetic viscosity 
fluid density 
inner dimensionless temperature 
outer dimensionless temperature 
streamfunction. 

Subscripts 
W evaluated at wall condition 
co evaluated at infinity. 

Superscripts 
, differentiation w.r.t. q or [ for outer and 

inner variables, respectively. 

It should be noted that the energy equation is based 
on the assumption of local thermal equilibrium. 
According to the criteria given by Whitaker [I I], this 
assumption should work well when the ratio of the 
particle or pore size to the characteristic length of the 
heated plate is much less than the inverse of the par- 
ticle Darcy-Rayleigh number to the second power, 
under the assumption that the conductivities of the 
solid and fluid phases have the same order of mag- 
nitude. 

The boundary conditions for equations (1) to (3) 
are 

U = v = 0, T= T, aty=O (4) 

u = 0, T+ T, aty-+co (5) 

where u and v are the velocity components in the x 
(along the plate) and y (pe~endicular to the plate) 
directions; $, 7” and g are the streamfunction, tem- 
perature and gravitational constant; K, C and E are 
the permeability, inertia coefficient and porosity of 
the porous medium; pn pLr and flF are the density, 
viscosity and thermal expansion coefficient of the 
fluid ; and M,~ = ~~=/(~~~) is the effective thermal 
diffusivity of the porous media with prcf denoting the 
product of density and specific heat of the fluid and 
k,,is the effective thermal conductivity. The subscripts 
w and co denote the conditions at wall and infinity, 

respectively. Since a homogeneous porous medium is 
assumed, K, C and E are all independent of position. 

It is suggested that the effective thermal diffusivity 
of a saturated porous medium can be expressed as 
[12-151: 

where cc$ is the stagnant diffusivity and CQ is the 
dynamic diffusivity due to mechanical dispersion. 
From the volume-averaged, continuum representa- 
tion of a porous medium, it is seen that the macro- 
scopic concept of thermal dispersion is due to the 
local temperature and velocity deviations [16]. The 
general form of the dispersion diffusivity cld has been 
investigated by several authors; see for example the 
review articles by Fried and Combarnous [is]. In the 
present anaIysis, it is assumed that Q can be expressed 
as: 

ad = yud (7) 

where d is the dimension of the particle or pore diam- 
eter, ?: is the dispersion coefficient which is a function 
of the structure of the porous medium. This kind of 
representation for ad is also supported by the previous 
experimental works [12-l 51. 

By incorporating the nondimensional variables 
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listed below 

equations (lE(3) can be written in the following non- 
dimensional forms 

g,‘f”‘-f’-&(fy= = -0 (9) 

(l+Dsf’)B”+(Dsf”+0.5f)O’ = 0 (10) 

with the following boundary conditions : 

f=f'=O, O=l atq=O (11) 

f/-O, O+O asq+co. (12) 

The local Darcy-Rayleigh number in equation (8) 

is defined as 

and the primes in equations (9t(12) refer to the 
differentiation with respect to the local-similarity 

coordinate r]. 
Three parameters in equations (9) and (10) which 

characterize respectively the boundary, inertia and 

dispersion effects are 

boundary parameter 

modified Grashof number &r = 
gpfATK2C 

v: 

dispersion parameter Ds = yka, 

where Da, = K/(x2) is the local Darcy number and 
&, = g/$ATKd/(v&) is the Darcy-Rayleigh number 
based on the pore or particle size, d. 

SINGULAR PERTURBATION SOLUTIONS 

Hsu and Cheng [4] and Hong et al. [5] have pointed 
out that the boundary parameter o, characterizes the 
ratio of the inner momentum boundary-layer thick- 

ness, of order (K/a) , ‘I2 to the thermal boundary-layer 

thickness, of order x/kaii2. For most porous media 
cX is a very small number and its effect is restricted to 
a thin region near the wall. To obtain a solution for 
os -+ 0, a singular perturbation technique is needed. 
It is assumed that the flow consists of two regions. 
Near the wall there is a thin region of large velocity 
gradients where the viscous resistance due to the pres- 

ence of the wall is important. In the remaining, much 
wider, region the velocity gradients are small com- 
pared with those near the wall and the boundary effect 
can be considered to be negligible. Accordingly, in the 
inner region, the similarity coordinate is stretched as 
follows 

(13) 

Inner expansions for f and 0 are taken to be 

S = a,[F,(i)+~,~,(1)+~~~*(l)+. ..I (144 

0 = O,(r)+cr,O,(i)+~~,2o,(r)+. . . (14b) 

The inner variables and expansions are chosen so that 
to the lowest order, as a, + 0, the viscous term which 
accounts for the no-slip boundary effect is retained. 

Writing the governing equations (9), (10) in terms 
of the inner coordinate (13) and expansions (14), and 
requiring that the equations be satisfied at each level 
in powers of gX, the following systems of equations 

are obtained : 

FA”-&-&Fi2 = -Go W4 

0; + Ds(F’@;) = 0 (15b) 

F;“-F’, -2&F’oF’, = -0, (16a) 

@;+Ds(Fo@‘,)‘+Ds(F’,O;)’ = 0. (16b) 

Note that when dispersion effects are neglected the 
two lowest-order temperature profiles are linear in the 
inner region. This can be easily seen from equations 

(15b) and (16b) by setting Ds = 0. These linear tem- 
perature profiles will be modified by the consideration 

of the dispersion effect. 
In similar fashion, outer expansions are taken to be 

f=fo+aJ,+uY2+... (17a) 

e=e,+g,e,+u,2e2+.... (17b) 

Substituting in the same manner as for the inner 
equations, the following systems of equations are 
obtained : 

f;+&(f;2)r-e, = 0 ‘(Isa) 

e;+os(f;e,y+o.5foe; = 0 (1W 

f;+2&(f;f;)-e; = 0 (194 

e;+Ds(fbe;)‘+Ds(f;eb)’ 

+o.s(f,e; +f,e;) = 0. (19b) 

Boundary conditions at the surface ([ = 0) are 
obtained by substituting the new variable (13) and the 
expansions (14) into equation (11) to give : 

at<=O: Fi(0)=F,!(O)=O i=O,1,2,... (204 

O,(O)= 1; @(O)=O i= 1,2,.... (20b) 

Likewise, the boundary conditions far from the sur- 
face are obtained by substituting the outer expansions 
(17) into equation (12) to obtain : 

atq+co: f:(co)=O i=O,1,2 ,... (21a) 

e,(m)=0 i=0,1,2 ,.... (2lb) 

The outer (c -+ co) boundary conditions for the inner 
equations and the inner (r-+ 0) boundary conditions 
for the outer equations are obtained by matching the 
inner and outer expansions. The method used here 
is similar to that described by Van Dyke [17]. The 
additional boundary conditions obtained according 
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to this matching principle are : 

Ob(co) = 0, Fb(a) = fX0) (22a) 

Q,(O) = @,(cQ), fo(0) = 0 (22b) 

O’,(co) = &JO), FY(co) = f;(o) (23a) 

t?,(O) = lim (O,(co)-O,(co){), a,-O 

fl(O) = h$MM-F6(=%). (23b) 

CALCULATION PROCEDURE 

Equation (15b) together with boundary con- 
ditions (20b) and (22a) can be easily integrated to give 

o,,= 1. 

Therefore, thermal dispersion has no effect on the 
basic inner temperature profile OO. If this is combined 
with equation (22b), the inner boundary conditions 
for the basic outer solutions f0 and 8, become 

Q,(O) = 1, “f&O) = 0. (24) 

This together with the boundary conditions (21a) and 
(21 b) provide enough information to obtain the 
zeroth-order outer solutions _fo and B0 by integrating 
(18a) and (18b) using a fourth-order Runge-Kutta 
scheme. Note that these basic outer equations are 
exactly the same as those studied by Plumb [8]. There- 
fore, his solutions provide the basic zeroth-order outer 
solutions for the present problem. 

After obtaining the solutions for f0 and t$,, the 
basic zeroth-order inner velocity expansion F, can 
be obtained by integrating equation (Isa) with the 
boundary conditions given by (20a) and (22a). Since 
0, = I, equation (t5a) can be rewritten as 

F;f-F0-&F;i2+1 = 0. (25) 

This and the boundary conditions (20) and (22) are 
exactly the same type of equations for a forced boun- 
dary-layer flow over a plane surface in porous media 
by employing the Brinkman-Ergun model (Appen- 
dix). It is also noted that the dispersion does not 
influence F, through this governing equation (22). The 
influence seems to be experienced by F, through the 
matching condition (22). However from equation 
(18a), it is clearly seen that f;(O) is independent of 
Ds. Therefore, no dispersion effect is experienced by 

6. 
The first pert~bation for the inner temperature 

profile, @, can now be obtained by solving (16b) with 
boundary conditions given by (20b) and (23a). Then 
integrating once and applying the results 0; = 0, it 
can be shown 

[I -t DsFh(m)]ei,(0) 
@‘l(i) = --~+yjj#&) 

with boundary condition O,(O) = 0. The temperature 
gradient at the wall is 

0; (0) = [ 1 + l)~F’~(co)]e;(O) (26) 

which is an important quantity in determining the 
heat transfer. 

The inner boundary conditions, fi(0) and O,(O), for 
the first outer expansions can now be evaluated from 
(23b). Together with boundary conditions (21), f, 
and 8, can be obtained by integrating (19a) and (19b). 
Afterwards, the first perturbation for the inner vel- 
ocity profile, F;, can be obtained by integrating 
(16a) with boundary conditions (20) and (23). 

To get the numerical results for the heat transfer 
which account for the boundary effect, the second 
perturbation of the inner temperature gradient at the 
wall, Q;(O), is important. However, there is no need 
to get complete solutions for O2 throughout the inner 
region since O;(O) can be evaluated from the infor- 
mation provided by the lower-order solutions as 
shown below. 

The governing equations for O2 can be obtained in 
a similar manner as those for 0, and 0,. The result 
is 

o;+Ds(FbO;)‘+Ds(F;O’,)’ = 0 (27) 

with boundary conditions given by 

O,(O) = 0 (28a) 

O>(a) = ~~(o)~+e’,(o) (28b) 

where equation (28b) is obtained by the matching 
principle. 

Equation (27) can be integrated once to give 

Evaluating this at < --t cc and applying the matching 
boundary condition (28b), two relations can be 
obtained 

where the conditions 

F;(a) = f6(O)i-+Yl(O) 

O;(CO) = e:(o) 

from the matching principle have already been used. 
It is also noted that the relation (29) can also be 
obtained by evaluating equation (19b) at the wall. 
Equation (30) when rearranged gives the result, O;(O), 
needed for calculating the heat transfer from the heat- 
ing plate, i.e. 

o;(O) = [l +DsF~(co)]8;(O)+Dsf’,(o)e~(o). (31) 

RESULTS AND DISCUSSIONS 

The numerically calculated variations of the outer 
velocity (.fk, .f;) and temperature profiles (O,, 0,) are 
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FIG. 1. Perturbation functions of outer expansion : (a) velocity ; (b) temperature. 

Gr = 1. From these figures it is seen that both inertia 
and dispersion effects tend to increase the outer boun- 
dary-layer thickness. The first-order outer expan- 

sions fi and Q1 are negative at q = 0 when Ds is 
not zero. This implies that dispersion decreases the 
velocity and temperature very close to the wall. The 
magnitude of these negative values increases as Ds 
becomes larger. 

Although the outside profiles f;l depend on both 
the inertia parameter &r and the dispersion parameter 

Ds, f;(O) is a function of C?r only. Then from equation 
(18a) it is seen that the variations for the zeroth-order 
velocity expansion Fh are independent of the dispersion 
effect. This is clearly shown in Fig. 3 where F&is shown 
to be a function of the modified Grashof number only. 

J 
1( 

As discussed earlier, the profiles for FA are similar to 
those for forced convection boundary layer flows over 
a flat plate by using the Brinkman-Ergun type of 
equation. The variations of F; as a function of < are 
presented in Fig. 4 where it is shown that F; is negative 
and is linear when [ is large. 

Figure 5 shows the results for the first perturbation 
to the inner temperature. For small Ds the linear 
profiles indicate that conduction is dominant. For 
large Ds, 0, is still linear in most portions of the inner 
region. However, for a very small region near the wall, 

the profile is no longer linear, and the gradient at the 
wall is very large. It is concluded that when dispersion 
effects are important, in a very small region near the 
wall (smaller than the inner-region thickness), the 
temperature gradient is greatly increased. As a result, 

1.0 

- Ds=0.2 

I I I I I 
0 2 4 6 8 10 

D 

FIG. 2. Perturbation functions of outer expansion : (a) velocity; (b) temperature. 
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2 4 6 8 10 

FIG. 3. Zeroth-order inner velocity profiles. FIG. 5. First-order inner temperature profiles. 

the heat transfer is greatly increased due to the dis- 
persion effect. However, in most parts of the thermal 

boundary layer, the temperature gradient is decreased 
due to better mixing by the mechanical dispersion 
effect. This phenomenon is very similar to that for a 
turbulent flow. In that case, the temperature gradient 
in most parts of the thermal boundary layer is 
decreased due to the better mixing by large eddies 
while the temperature gradient in the viscous sublayer 
is largely increased. 

The most important result to be given is an ex- 
pression for heat transfer. This can be presented most 
conveniently by introduction of the local Nusselt 
number 

aT 

Nux = - (TWX T,) ay y=o’ 

By introducing the nondimensional variables, this can 
be written as 

Nux 1 a8 - _-_ 
Ra’/2- 

x or ai i=o’ 

From the expansion for the temperature field, the 
local Nusselt number is related to the gradients O;(O) 
and O;(O) at the surface as 

NUX 
 ̂

Ra’/2 = 
-[o’,(o)+r7,o;(o)+. .] (32) 

I 

’ I 
- Ds=O.2 

0.6 -----_ Ds= 2 

F, 
-4 06 

/ 
G-r= 0.1 

FIG. 4. First-order inner velocity profiles. 

G-r Ds 
0.1 02 

where O;(O) and O;(O) are given by equations (26) 
and (31), respectively. 

The calculated values of the temperature derivatives 
in (32) are listed in Table 1. When both inertia and 
dispersion effects are neglected (& = Ds = 0), the 
result O;(O) is the same as that obtained by Cheng 
and Minkowycz [l]. The solution O;(O) gives a first- 
order correction due to the inclusion of the boundary 
effect. Since O;(O) is always positive, the boundary 
effect always decreases the heat transfer. The results 

for the local Nusselt number according to equation 
(32) are presented in Table 2. When inertia and dis- 
persion effects are considered, the results show that 
for large values of the parameter Ds, the dispersion 
effect dominates and the heat transfer is greatly 
increased. However, for small values of Ds, the trans- 
verse dispersion effect is relatively unimportant and 
the dominant inertia effect reduces the heat transfer. 
From the nature of the present analysis, the results 
given by (32) should be better for smaller values of 
ox. Fortunately, for most porous media, eX is very 
small except for a very short region near the leading 
edge ; therefore, the present analysis should give sat- 
isfactory results for most cases. Numerical solutions 
of the full equations (9) and (10) obtained by using a 
modified version of the adaptive finite-difference 
solver (PASVAR) [18] are also presented in Table 2. 
A comparison of results by these two methods shows 
that the singular perturbation method gives quite sat- 
isfactory results especially for small cX. The advantage 

Table 1. Solutions for O;(O) and O;(O) 

dr DS @i(O) @X0) 

0 0 

0.1 0 
0.2 
2 
5 

1 0 
0.2 
2 
5 

-0.4438 0.2945 

-0.4295 0.2524 
-0.4575 0.2938 
-0.6574 0.5099 
-0.8957 0.6922 

-0.3658 0.1299 
-0.3827 0.1447 
-0.5098 0.2340 
-0.6691 0.3199 
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Table 2. Numerical results for Nu,/~?u~‘~ 2. 

Nu,/Ra’l’ 

Finite Percentage 
& Ds 6, Perturbation difference difference 

0 0 0.1 
0.05 
0.01 

0.1 0.2 0.1 
0.05 
0.01 

2 0.1 
0.05 
0.01 

5 0.1 
0.05 
0.01 

1 0.2 0.1 
0.05 
0.01 

2 0.1 
0.05 
0.1 

5 0.1 
0.05 
0.01 

-0.414350 -0.417011 0.638 
-0.429075 -0.429728 0.151 
-0.440855 -0.440839 0.004 

-0.428120 -0.430647 
-0.442810 -0.443511 
-0.454562 -0.454639 
-0.606410 -0.610966 
-0.631905 -0.633191 
-0.652301 -0.652354 
-0.826480 -0.833694 
-0.861090 -0.863571 
-0.888778 -0.889109 

0.587 
0.158 
0.018 
0.746 
0.202 
0.008 
0.865 
0.287 

0.187 
0.051 

-0.368230 -0.368922 
-0.375465 -0.375659 
-0.381253 -0.381262 0.003 
-0.486400 -0.487830 0.293 
-0.498100 -0.498558 0.092 
-0.507460 -0.507529 0.014 
-0.637710 -0.640359 0.414 
-0.653705 -0.654710 0.153 
-0.666501 -0.666659 0.024 

of this method over the other one is that it gives 
results which display the boundary effect explicitly. 
In addition, it exposes the predominant factors in 
different parts of the boundary layer. 

CONCLUSIONS 

The steady natural convection heat transfer from a 
vertical, isothermal, heated plate in porous media is 
studied analytically. Three parameters are found to 
characterize three non-Darcian effects : boundary, 
inertia and dispersion effects. By the inclusion of the 
no-slip boundary effect, it is found the flow consists 
of two distinct regions : an inner region exists near the 
surface where the velocity gradient is very large and 
the viscous term cannot be neglected. Away from the 
wall, a much wider region exists where the boundary 
effect can be neglected. Using the method of matched 
asymptotic expansions, it is found that dispersion has 
no effect on the zeroth-order inner expansions. The 
zeroth-order inner velocity profile is found to be simi- 
lar to that for a forced convection boundary layer 
over a flat surface. Both the inertia and boundary 
effects are found to decrease the heat transfer, while 
dispersion will increase the heat transfer. Whether the 
heat transfer is increased or decreased depends on the 
relative magnitude of these three mechanisms. 
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APPENDIX 

By employing the well known BrinkmanErgun model for 
non-Darcian flow, the governing equation for a forced boun- 
dary-layer flow over a plane surface can be written as 

with boundary conditions 

aty=O: u=o 

aty+oo: u-+u,. 

These equations can be nondimensionalized by using the 
Darcy velocity un and inner momentum boundary-layer 
thickness 6, 
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By defining the nondimensional streamfunction, F, the non- and governing equation and the boundary conditions are 
dimensional coordinate, r~, as transformed to 

then 

F= 
* Y 

u&K/e )I!” ’ = (K/e)"' 

F”‘-F’_&F’2+1 =o 

F’(0) = 0, F’(co) = 2 

where the inertia Reynolds number ie = CKu,/v, is anal- 
ogous to the modified Grashof number &. 

ANALYSE DE L’EFFET DE LA DISPERSION THERMIQUE SUR LA CONVECTION 
NATURELLE DANS UN MILIEU POREUX CONTRE UNE PLAQUE VERTICALE 

Rbmn~n examine analytiquement l’effet de la dispersion thermique transversale sur la convection 
naturelle dans un milieu poreux a partir dune plaque chaude verticale. Les resultats montrent qu’a cause 
du meilleur melange par l’effet de dispersion thermique, le flux de chaleur est fortement accru. En prenant 
en compte la condition de non glissement, on trouve que l’ecoulement a une structure de couche duale. 
Pour la region interne, le gradient de vitesse est trts grand et la resistance visqueuse due a la presence de 
la paroi est importante. Pour la region externe plus epaisse, le gradient de vitesse est plutot faible et le 
terme de resistance visqueuse peut itre neglige. Une methode de perturbation singuliire est employee pour 

obtenir des corrections d’ordre elevt dues a l’inclusion de l’effet de front&e sans glissement. 

UNTERSUCHUNG DES THERMISCHEN AUSBREITUNGSEFFEKTES AUF EINER 
VERTIKALEN PLATTE BE1 NATtiRLICHER KONVEKTION IN POR&EN MEDIEN 

Zusammenfassung-Der EinfluB der thermischen Querausbreitung auf die natiirliche Konvektion an einer 
vertikalen geheizten Platte in einem poriisen Medium wird analytisch untersucht. Die Ergebnisse zeigen, 
da13 infolge einer verbesserten Vermischung durch den Effekt der thermischen Querausbreitung der Wlr- 
meiibergang stark verbessert wird. Zieht man den schlupflosen Grenzschichteffekt in Betracht, zeigt sich 
eine Zweilagenstruktur der Stromung. Im inneren Bereich ist der Geschwindigkeitsgradient sehr groD und 
die Reibungskraft wird im Wandbereich dominierend. Im luDeren, vie1 griil3eren Strijmungsgebiet ist der 
Geschwindigkeitsgradient recht klein und die Reibungskraft kann vemachllssigt werden. Es wird eine 

Stromungsmethode zur Ermittlung der Korrekturfaktoren hiiherer Ordnung herangezogen. 

AHAJIA3 BJIMIIHkDI PACI-IPOCTPAHEHHd TEI-LJIA HA ECTECTBEHHYIO 
KOHBEKHHIO OKOJIO BEPTHKAJIbHOti I-IJIACTMHbI B I-IOPMCTOH CPEAE 

AHHoTaqHa-hamTarecKB IiccnenyeTcn BnmH5ie nonepeworo nepeHoca Tenna Ha ecTecTeHHym KOH- 

BeKUHH) OKOnO BepTHKanbHOfi HarpeBaeMOfi IInaCTHHbl B IlOpHCTOii CpeAe. Pe3yJIbTaTbI llOKa3bIBaH)T, 

~TO, 6naronapa nygruebty nepeMeunisawif0, mAywipoBamoMy pacnpocTpaHeHseM Tenna, mTeiicm- 

HOCTb TeIInOnepeHOCa 3Ha'IllTenbHO paCTeT. B ITpeAtIOnO~eHHH OTCyTCTBHSI CKOnbEeHWI Ha rpaHHlle 

HaiiAeHO, 'iTO Te'ieHBe RMeeT AByXCnOtiHyEO CTpyKTypy. &IH BHyTpeHHei-4 o6nacra rpaAHeHT CKOpOCTH 

OYeHb BbICOK H B113KOe COnpOTl,BneHHe H3-3a HanUYHB CTeHKH BeCbMa CyUeCTBeHHO. &I,, HBPyTHOii, 

6onee UIlipOKOti 30Hb1,rpaAHeHTCKOpOCTRAOBOnbHO Man II WleHOM,OtlHCbIBaK)l4BM B113KOe COllpOTAB- 

newe, MO~HO npeHe6peYb. Ann nony~enna nonpaeox abicmero nopnnrca c yqeroh4 orcyrcrann caonb- 
geHH,-, Ha CTeHKe np‘%MeHReTCn MeTOA CHHryJUIpHbIX BOSMy”,eHHfi. 


